Asymptotics of variance of the lattice point count
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 751-758
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The variance of the number of lattice points inside the dilated bounded set $rD$ with random position in $\Bbb R^d$ has asymptotics $\sim r^{d-1}$ if the rotational average of the squared modulus of the Fourier transform of the set is $O(\rho ^{-d-1})$. The asymptotics follow from Wiener's Tauberian theorem.
@article{CMJ_2008__58_3_a12,
author = {Jan\'a\v{c}ek, Ji\v{r}{\'\i}},
title = {Asymptotics of variance of the lattice point count},
journal = {Czechoslovak Mathematical Journal},
pages = {751--758},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {2008},
mrnumber = {2455936},
zbl = {1174.60002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a12/}
}
Janáček, Jiří. Asymptotics of variance of the lattice point count. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 751-758. http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a12/