2-normalization of lattices
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 577-593.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\tau $ be a type of algebras. A valuation of terms of type $\tau $ is a function $v$ assigning to each term $t$ of type $\tau $ a value $v(t) \geq 0$. For $k \geq 1$, an identity $s \approx t$ of type $\tau $ is said to be $k$-normal (with respect to valuation $v$) if either $s = t$ or both $s$ and $t$ have value $\geq k$. Taking $k = 1$ with respect to the usual depth valuation of terms gives the well-known property of normality of identities. A variety is called $k$-normal (with respect to the valuation $v$) if all its identities are $k$-normal. For any variety $V$, there is a least $k$-normal variety $N_k(V)$ containing $V$, namely the variety determined by the set of all $k$-normal identities of $V$. The concept of $k$-normalization was introduced by K. Denecke and S. L. Wismath in their paper (Algebra Univers., 50, 2003, pp.107-128) and an algebraic characterization of the elements of $N_k(V)$ in terms of the algebras in $V$ was given in (Algebra Univers., 51, 2004, pp. 395--409). In this paper we study the algebras of the variety $N_2(V)$ where $V$ is the type $(2,2)$ variety $L$ of lattices and our valuation is the usual depth valuation of terms. We introduce a construction called the {\it $3$-level inflation} of a lattice, and use the order-theoretic properties of lattices to show that the variety $N_2(L)$ is precisely the class of all $3$-level inflations of lattices. We also produce a finite equational basis for the variety $N_2(L)$.
Classification : 06B20, 08A40, 08B15
Keywords: 2-normal identities; lattices; 2-normalized lattice; 3-level inflation of a lattice
@article{CMJ_2008__58_3_a0,
     author = {Chajda, I. and Cheng, W. and Wismath, S. L.},
     title = {2-normalization of lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {577--593},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2008},
     mrnumber = {2455924},
     zbl = {1174.08003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a0/}
}
TY  - JOUR
AU  - Chajda, I.
AU  - Cheng, W.
AU  - Wismath, S. L.
TI  - 2-normalization of lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 577
EP  - 593
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a0/
LA  - en
ID  - CMJ_2008__58_3_a0
ER  - 
%0 Journal Article
%A Chajda, I.
%A Cheng, W.
%A Wismath, S. L.
%T 2-normalization of lattices
%J Czechoslovak Mathematical Journal
%D 2008
%P 577-593
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a0/
%G en
%F CMJ_2008__58_3_a0
Chajda, I.; Cheng, W.; Wismath, S. L. 2-normalization of lattices. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 577-593. http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a0/