3-Selmer groups for curves $y^2=x^3+a$
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 429-445
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We explicitly perform some steps of a 3-descent algorithm for the curves $y^2=x^3+a$, $a$ a nonzero integer. In general this will enable us to bound the order of the 3-Selmer group of such curves.
@article{CMJ_2008__58_2_a8,
author = {Bandini, Andrea},
title = {3-Selmer groups for curves $y^2=x^3+a$},
journal = {Czechoslovak Mathematical Journal},
pages = {429--445},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2008},
mrnumber = {2411099},
zbl = {1174.11048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a8/}
}
Bandini, Andrea. 3-Selmer groups for curves $y^2=x^3+a$. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 429-445. http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a8/