3-Selmer groups for curves $y^2=x^3+a$
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 429-445.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We explicitly perform some steps of a 3-descent algorithm for the curves $y^2=x^3+a$, $a$ a nonzero integer. In general this will enable us to bound the order of the 3-Selmer group of such curves.
Classification : 11G05, 11Y50
Keywords: elliptic curves; Selmer groups
@article{CMJ_2008__58_2_a8,
     author = {Bandini, Andrea},
     title = {3-Selmer groups for curves $y^2=x^3+a$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {429--445},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2008},
     mrnumber = {2411099},
     zbl = {1174.11048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a8/}
}
TY  - JOUR
AU  - Bandini, Andrea
TI  - 3-Selmer groups for curves $y^2=x^3+a$
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 429
EP  - 445
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a8/
LA  - en
ID  - CMJ_2008__58_2_a8
ER  - 
%0 Journal Article
%A Bandini, Andrea
%T 3-Selmer groups for curves $y^2=x^3+a$
%J Czechoslovak Mathematical Journal
%D 2008
%P 429-445
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a8/
%G en
%F CMJ_2008__58_2_a8
Bandini, Andrea. 3-Selmer groups for curves $y^2=x^3+a$. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 429-445. http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a8/