Extending modules relative to a torsion theory
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 381-393
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
An $R$-module $M$ is said to be an extending module if every closed submodule of $M$ is a direct summand. In this paper we introduce and investigate the concept of a type 2 $\tau $-extending module, where $\tau $ is a hereditary torsion theory on $\mathop {\text{Mod}}$-$R$. An $R$-module $M$ is called type 2 $\tau $-extending if every type 2 $\tau $-closed submodule of $M$ is a direct summand of $M$. If $\tau _I$ is the torsion theory on $\mathop {\text{Mod}}$-$R$ corresponding to an idempotent ideal $I$ of $R$ and $M$ is a type 2 $\tau _I$-extending $R$-module, then the question of whether or not $M/MI$ is an extending $R/I$-module is investigated. In particular, for the Goldie torsion theory $\tau _G$ we give an example of a module that is type 2 ${\tau }_G$-extending but not extending.
Classification :
16D50, 16D70, 16D90, 16S90
Keywords: torsion theory; extending module; closed submodule
Keywords: torsion theory; extending module; closed submodule
@article{CMJ_2008__58_2_a5,
author = {Do\u{g}ru\"oz, Semra},
title = {Extending modules relative to a torsion theory},
journal = {Czechoslovak Mathematical Journal},
pages = {381--393},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2008},
mrnumber = {2411096},
zbl = {1166.16014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a5/}
}
Doğruöz, Semra. Extending modules relative to a torsion theory. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 381-393. http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a5/