Two sided norm estimate of the Bergman projection on $L^p$ spaces
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 569-575
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We give some explicit values of the constants $C_{1}$ and $C_{2}$ in the inequality $C_{1}/{\sin (\frac{\pi }{p})}\le \left| P\right| _{p}\le C_{2}/{\sin (\frac{\pi }{p})}$ where $\left| P\right| _{p}$ denotes the norm of the Bergman projection on the $L^{p}$ space.
@article{CMJ_2008__58_2_a19,
author = {Dostani\'c, Milutin R.},
title = {Two sided norm estimate of the {Bergman} projection on $L^p$ spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {569--575},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2008},
mrnumber = {2411110},
zbl = {1174.46018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a19/}
}
Dostanić, Milutin R. Two sided norm estimate of the Bergman projection on $L^p$ spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 569-575. http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a19/