Two sided norm estimate of the Bergman projection on $L^p$ spaces
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 569-575.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give some explicit values of the constants $C_{1}$ and $C_{2}$ in the inequality $C_{1}/{\sin (\frac{\pi }{p})}\le \left| P\right| _{p}\le C_{2}/{\sin (\frac{\pi }{p})}$ where $\left| P\right| _{p}$ denotes the norm of the Bergman projection on the $L^{p}$ space.
Classification : 32A25, 46E15, 46E30, 47B38
@article{CMJ_2008__58_2_a19,
     author = {Dostani\'c, Milutin R.},
     title = {Two sided norm estimate of the {Bergman} projection on $L^p$ spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {569--575},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2008},
     mrnumber = {2411110},
     zbl = {1174.46018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a19/}
}
TY  - JOUR
AU  - Dostanić, Milutin R.
TI  - Two sided norm estimate of the Bergman projection on $L^p$ spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 569
EP  - 575
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a19/
LA  - en
ID  - CMJ_2008__58_2_a19
ER  - 
%0 Journal Article
%A Dostanić, Milutin R.
%T Two sided norm estimate of the Bergman projection on $L^p$ spaces
%J Czechoslovak Mathematical Journal
%D 2008
%P 569-575
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a19/
%G en
%F CMJ_2008__58_2_a19
Dostanić, Milutin R. Two sided norm estimate of the Bergman projection on $L^p$ spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 569-575. http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a19/