Alternative characterisations of Lorentz-Karamata spaces
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 517-540.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We present new formulae providing equivalent quasi-norms on Lorentz-Karamata spaces. Our results are based on properties of certain averaging operators on the cone of non-negative and non-increasing functions in convenient weighted Lebesgue spaces. We also illustrate connections between our results and mapping properties of such classical operators as the fractional maximal operator and the Riesz potential (and their variants) on the Lorentz-Karamata spaces.
Classification : 26D10, 42B35, 46E30, 47B38, 47G10
Keywords: Lorentz-Karamata spaces; equivalent quasi-norms; weighted norm inequalities; fractional maximal operators; Riesz potentials
@article{CMJ_2008__58_2_a16,
     author = {Edmunds, D. E. and Opic, B.},
     title = {Alternative characterisations of {Lorentz-Karamata} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {517--540},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2008},
     mrnumber = {2411107},
     zbl = {1174.46019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a16/}
}
TY  - JOUR
AU  - Edmunds, D. E.
AU  - Opic, B.
TI  - Alternative characterisations of Lorentz-Karamata spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 517
EP  - 540
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a16/
LA  - en
ID  - CMJ_2008__58_2_a16
ER  - 
%0 Journal Article
%A Edmunds, D. E.
%A Opic, B.
%T Alternative characterisations of Lorentz-Karamata spaces
%J Czechoslovak Mathematical Journal
%D 2008
%P 517-540
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a16/
%G en
%F CMJ_2008__58_2_a16
Edmunds, D. E.; Opic, B. Alternative characterisations of Lorentz-Karamata spaces. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 517-540. http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a16/