A topological space is strongly paracompact if and only if for any monotone increasing open cover of it there exists a star-finite open refinement
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 487-491.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We get the following result. A topological space is strongly paracompact if and only if for any monotone increasing open cover of it there exists a star-finite open refinement. We positively answer a question of the strongly paracompact property.
Classification : 54C35, 54D20, 54E32
Keywords: paracompact property; strongly paracompact property
@article{CMJ_2008__58_2_a13,
     author = {Han-Zhang, Qu},
     title = {A topological space is strongly paracompact if and only if for any monotone increasing open cover of it there exists a star-finite open refinement},
     journal = {Czechoslovak Mathematical Journal},
     pages = {487--491},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2008},
     mrnumber = {2411104},
     zbl = {1174.54013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a13/}
}
TY  - JOUR
AU  - Han-Zhang, Qu
TI  - A topological space is strongly paracompact if and only if for any monotone increasing open cover of it there exists a star-finite open refinement
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 487
EP  - 491
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a13/
LA  - en
ID  - CMJ_2008__58_2_a13
ER  - 
%0 Journal Article
%A Han-Zhang, Qu
%T A topological space is strongly paracompact if and only if for any monotone increasing open cover of it there exists a star-finite open refinement
%J Czechoslovak Mathematical Journal
%D 2008
%P 487-491
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a13/
%G en
%F CMJ_2008__58_2_a13
Han-Zhang, Qu. A topological space is strongly paracompact if and only if for any monotone increasing open cover of it there exists a star-finite open refinement. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 487-491. http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a13/