The symmetric Choquet integral with respect to Riesz-space-valued capacities
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 289-310.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A definition of “Šipoš integral” is given, similarly to [3],[5],[10], for real-valued functions and with respect to Dedekind complete Riesz-space-valued “capacities”. A comparison of Choquet and Šipoš-type integrals is given, and some fundamental properties and some convergence theorems for the Šipoš integral are proved.
Classification : 28A25, 28A70, 28B05, 28C99, 46G12
Keywords: Riesz spaces; capacities; integration; symmetric Choquet integral; monotone and dominated convergence theorems
@article{CMJ_2008__58_2_a0,
     author = {Boccuto, Antonio and Rie\v{c}an, Beloslav},
     title = {The symmetric {Choquet} integral with respect to {Riesz-space-valued} capacities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {289--310},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2008},
     mrnumber = {2411091},
     zbl = {1174.28012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a0/}
}
TY  - JOUR
AU  - Boccuto, Antonio
AU  - Riečan, Beloslav
TI  - The symmetric Choquet integral with respect to Riesz-space-valued capacities
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 289
EP  - 310
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a0/
LA  - en
ID  - CMJ_2008__58_2_a0
ER  - 
%0 Journal Article
%A Boccuto, Antonio
%A Riečan, Beloslav
%T The symmetric Choquet integral with respect to Riesz-space-valued capacities
%J Czechoslovak Mathematical Journal
%D 2008
%P 289-310
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a0/
%G en
%F CMJ_2008__58_2_a0
Boccuto, Antonio; Riečan, Beloslav. The symmetric Choquet integral with respect to Riesz-space-valued capacities. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 2, pp. 289-310. http://geodesic.mathdoc.fr/item/CMJ_2008__58_2_a0/