Derivations with power central values on Lie ideals in prime rings
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 147-153.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a prime ring of char $R\ne 2$ with a nonzero derivation $d$ and let $U$ be its noncentral Lie ideal. If for some fixed integers $n_1\ge 0, n_2\ge 0, n_3\ge 0$, $( u^{n_1}[d(u),u]u^{n_2})^{n_3}\in Z(R)$ for all $u \in U$, then $R$ satisfies $S_4$, the standard identity in four variables.
Classification : 16N60, 16R50, 16W10, 16W25
Keywords: prime ring; derivation; extended centroid; martindale quotient ring
@article{CMJ_2008__58_1_a9,
     author = {Dhara, Basudeb and Sharma, R. K.},
     title = {Derivations with power central values on {Lie} ideals in prime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {147--153},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2008},
     mrnumber = {2402531},
     zbl = {1165.16303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a9/}
}
TY  - JOUR
AU  - Dhara, Basudeb
AU  - Sharma, R. K.
TI  - Derivations with power central values on Lie ideals in prime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 147
EP  - 153
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a9/
LA  - en
ID  - CMJ_2008__58_1_a9
ER  - 
%0 Journal Article
%A Dhara, Basudeb
%A Sharma, R. K.
%T Derivations with power central values on Lie ideals in prime rings
%J Czechoslovak Mathematical Journal
%D 2008
%P 147-153
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a9/
%G en
%F CMJ_2008__58_1_a9
Dhara, Basudeb; Sharma, R. K. Derivations with power central values on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 147-153. http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a9/