Symmetry of iteration graphs
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 131-145.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We examine iteration graphs of the squaring function on the rings $\mathbb{Z}/n\mathbb{Z}$ when $n = 2^{k}p$, for $p$ a Fermat prime. We describe several invariants associated to these graphs and use them to prove that the graphs are not symmetric when $k=3$ and when $k\ge 5$ and are symmetric when $k = 4$.
Classification : 05C20, 05C62, 11T99
Keywords: digraph; iteration digraph; quadratic map; tree; cycle
@article{CMJ_2008__58_1_a8,
     author = {Carlip, Walter and Mincheva, Martina},
     title = {Symmetry of iteration graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {131--145},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2008},
     mrnumber = {2402530},
     zbl = {1174.05048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a8/}
}
TY  - JOUR
AU  - Carlip, Walter
AU  - Mincheva, Martina
TI  - Symmetry of iteration graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 131
EP  - 145
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a8/
LA  - en
ID  - CMJ_2008__58_1_a8
ER  - 
%0 Journal Article
%A Carlip, Walter
%A Mincheva, Martina
%T Symmetry of iteration graphs
%J Czechoslovak Mathematical Journal
%D 2008
%P 131-145
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a8/
%G en
%F CMJ_2008__58_1_a8
Carlip, Walter; Mincheva, Martina. Symmetry of iteration graphs. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 131-145. http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a8/