Minimal submanifolds in $\mathbb{R}^4$ with a g.c.K. structure
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 61-78.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we obtain all invariant, anti-invariant and $CR$ submanifolds in $({\mathbb{R}}^4,g,J)$ endowed with a globally conformal Kähler structure which are minimal and tangent or normal to the Lee vector field of the g.c.K. structure.
Classification : 53B25, 53B35, 53C21, 53C42, 53C55
Keywords: locally conformal Kähler structure; minimal submanifolds; invariant submanifolds; totally real submanifolds; $CR$-submanifolds
@article{CMJ_2008__58_1_a4,
     author = {Munteanu, Marian-Ioan},
     title = {Minimal submanifolds in $\mathbb{R}^4$ with a {g.c.K.} structure},
     journal = {Czechoslovak Mathematical Journal},
     pages = {61--78},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2008},
     mrnumber = {2402526},
     zbl = {1174.53011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a4/}
}
TY  - JOUR
AU  - Munteanu, Marian-Ioan
TI  - Minimal submanifolds in $\mathbb{R}^4$ with a g.c.K. structure
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 61
EP  - 78
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a4/
LA  - en
ID  - CMJ_2008__58_1_a4
ER  - 
%0 Journal Article
%A Munteanu, Marian-Ioan
%T Minimal submanifolds in $\mathbb{R}^4$ with a g.c.K. structure
%J Czechoslovak Mathematical Journal
%D 2008
%P 61-78
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a4/
%G en
%F CMJ_2008__58_1_a4
Munteanu, Marian-Ioan. Minimal submanifolds in $\mathbb{R}^4$ with a g.c.K. structure. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 61-78. http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a4/