On the Euler function of repdigits
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 51-59.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac{b^n-1}{b-1}\Big )=y\frac{b^m-1}{b-1},\qquad {\text{where}} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \] has only finitely many positive integer solutions $(x,y,m,n)$.
Classification : 11A25
Keywords: Euler function; prime; divisor
@article{CMJ_2008__58_1_a3,
     author = {Luca, Florian},
     title = {On the {Euler} function of repdigits},
     journal = {Czechoslovak Mathematical Journal},
     pages = {51--59},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2008},
     mrnumber = {2402525},
     zbl = {1174.11004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a3/}
}
TY  - JOUR
AU  - Luca, Florian
TI  - On the Euler function of repdigits
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 51
EP  - 59
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a3/
LA  - en
ID  - CMJ_2008__58_1_a3
ER  - 
%0 Journal Article
%A Luca, Florian
%T On the Euler function of repdigits
%J Czechoslovak Mathematical Journal
%D 2008
%P 51-59
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a3/
%G en
%F CMJ_2008__58_1_a3
Luca, Florian. On the Euler function of repdigits. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a3/