On the Euler function of repdigits
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 51-59
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a positive integer $n$ we write $\phi (n)$ for the Euler function of $n$. In this note, we show that if $b>1$ is a fixed positive integer, then the equation \[ \phi \Big (x\frac{b^n-1}{b-1}\Big )=y\frac{b^m-1}{b-1},\qquad {\text{where}} \ x,~y\in \lbrace 1,\ldots ,b-1\rbrace , \] has only finitely many positive integer solutions $(x,y,m,n)$.
@article{CMJ_2008__58_1_a3,
author = {Luca, Florian},
title = {On the {Euler} function of repdigits},
journal = {Czechoslovak Mathematical Journal},
pages = {51--59},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2008},
mrnumber = {2402525},
zbl = {1174.11004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a3/}
}
Luca, Florian. On the Euler function of repdigits. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a3/