The upper traceable number of a graph
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 271-287
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a nontrivial connected graph $G$ of order $n$ and a linear ordering $s\: v_1, v_2, \ldots , v_n$ of vertices of $G$, define $d(s) = \sum _{i=1}^{n-1} d(v_i, v_{i+1})$. The traceable number $t(G)$ of a graph $G$ is $t(G) = \min \lbrace d(s)\rbrace $ and the upper traceable number $t^+(G)$ of $G$ is $t^+(G) = \max \lbrace d(s)\rbrace ,$ where the minimum and maximum are taken over all linear orderings $s$ of vertices of $G$. We study upper traceable numbers of several classes of graphs and the relationship between the traceable number and upper traceable number of a graph. All connected graphs $G$ for which $t^+(G)- t(G) = 1$ are characterized and a formula for the upper traceable number of a tree is established.
Classification :
05C12, 05C45
Keywords: traceable number; upper traceable number; Hamiltonian number
Keywords: traceable number; upper traceable number; Hamiltonian number
@article{CMJ_2008__58_1_a15,
author = {Okamoto, Futaba and Zhang, Ping and Saenpholphat, Varaporn},
title = {The upper traceable number of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {271--287},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2008},
mrnumber = {2402537},
zbl = {1174.05040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a15/}
}
TY - JOUR AU - Okamoto, Futaba AU - Zhang, Ping AU - Saenpholphat, Varaporn TI - The upper traceable number of a graph JO - Czechoslovak Mathematical Journal PY - 2008 SP - 271 EP - 287 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a15/ LA - en ID - CMJ_2008__58_1_a15 ER -
Okamoto, Futaba; Zhang, Ping; Saenpholphat, Varaporn. The upper traceable number of a graph. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 271-287. http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a15/