Henstock-Kurzweil and McShane product integration; descriptive definitions
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 241-269
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The Henstock-Kurzweil and McShane product integrals generalize the notion of the Riemann product integral. We study properties of the corresponding indefinite integrals (i.e. product integrals considered as functions of the upper bound of integration). It is shown that the indefinite McShane product integral of a matrix-valued function $A$ is absolutely continuous. As a consequence we obtain that the McShane product integral of $A$ over $[a,b]$ exists and is invertible if and only if $A$ is Bochner integrable on $[a,b]$.
Classification :
26A39, 28B05, 46G10
Keywords: Henstock-Kurzweil product integral; McShane product integral; Bochner product integral
Keywords: Henstock-Kurzweil product integral; McShane product integral; Bochner product integral
@article{CMJ_2008__58_1_a14,
author = {Slav{\'\i}k, Anton{\'\i}n and Schwabik, \v{S}tefan},
title = {Henstock-Kurzweil and {McShane} product integration; descriptive definitions},
journal = {Czechoslovak Mathematical Journal},
pages = {241--269},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2008},
mrnumber = {2402536},
zbl = {1174.28013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a14/}
}
TY - JOUR AU - Slavík, Antonín AU - Schwabik, Štefan TI - Henstock-Kurzweil and McShane product integration; descriptive definitions JO - Czechoslovak Mathematical Journal PY - 2008 SP - 241 EP - 269 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a14/ LA - en ID - CMJ_2008__58_1_a14 ER -
Slavík, Antonín; Schwabik, Štefan. Henstock-Kurzweil and McShane product integration; descriptive definitions. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 241-269. http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a14/