On a class of nonlinear problems involving a $p(x)$-Laplace type operator
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 155-172.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the boundary value problem $-{\mathrm div}((|\nabla u|^{p_1(x) -2}+|\nabla u|^{p_2(x)-2})\nabla u)=f(x,u)$ in $\Omega $, $u=0$ on $\partial \Omega $, where $\Omega $ is a smooth bounded domain in ${\mathbb{R}} ^N$. Our attention is focused on two cases when $f(x,u)=\pm (-\lambda |u|^{m(x)-2}u+|u|^{q(x)-2}u)$, where $m(x)=\max \lbrace p_1(x),p_2(x)\rbrace $ for any $x\in \overline{\Omega }$ or $m(x)$ for any $x\in \overline{\Omega }$. In the former case we show the existence of infinitely many weak solutions for any $\lambda >0$. In the latter we prove that if $\lambda $ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a ${\mathbb{Z}} _2$-symmetric version for even functionals of the Mountain Pass Theorem and some adequate variational methods.
Classification : 35D05, 35J60, 35J70, 47J30, 58E05, 68T40, 76A02, 76A05
Keywords: $p(x)$-Laplace operator; generalized Lebesgue-Sobolev space; critical point; weak solution; electrorheological fluid
@article{CMJ_2008__58_1_a10,
     author = {Mih\u{a}ilescu, Mihai},
     title = {On a class of nonlinear problems involving a $p(x)${-Laplace} type operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {155--172},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2008},
     mrnumber = {2402532},
     zbl = {1165.35336},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a10/}
}
TY  - JOUR
AU  - Mihăilescu, Mihai
TI  - On a class of nonlinear problems involving a $p(x)$-Laplace type operator
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 155
EP  - 172
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a10/
LA  - en
ID  - CMJ_2008__58_1_a10
ER  - 
%0 Journal Article
%A Mihăilescu, Mihai
%T On a class of nonlinear problems involving a $p(x)$-Laplace type operator
%J Czechoslovak Mathematical Journal
%D 2008
%P 155-172
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a10/
%G en
%F CMJ_2008__58_1_a10
Mihăilescu, Mihai. On a class of nonlinear problems involving a $p(x)$-Laplace type operator. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 1, pp. 155-172. http://geodesic.mathdoc.fr/item/CMJ_2008__58_1_a10/