On eigenvectors of mixed graphs with exactly one nonsingular cycle
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1215-1222.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a mixed graph. The eigenvalues and eigenvectors of $G$ are respectively defined to be those of its Laplacian matrix. If $G$ is a simple graph, [M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975), 619–633] gave a remarkable result on the structure of the eigenvectors of $G$ corresponding to its second smallest eigenvalue (also called the algebraic connectivity of $G$). For $G$ being a general mixed graph with exactly one nonsingular cycle, using Fiedler’s result, we obtain a similar result on the structure of the eigenvectors of $G$ corresponding to its smallest eigenvalue.
Classification : 05C50, 15A18
Keywords: mixed graphs; Laplacian eigenvectors
@article{CMJ_2007__57_4_a7,
     author = {Fan, Yi-Zheng},
     title = {On eigenvectors of mixed graphs with exactly one nonsingular cycle},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1215--1222},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2007},
     mrnumber = {2357587},
     zbl = {1174.05075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a7/}
}
TY  - JOUR
AU  - Fan, Yi-Zheng
TI  - On eigenvectors of mixed graphs with exactly one nonsingular cycle
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1215
EP  - 1222
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a7/
LA  - en
ID  - CMJ_2007__57_4_a7
ER  - 
%0 Journal Article
%A Fan, Yi-Zheng
%T On eigenvectors of mixed graphs with exactly one nonsingular cycle
%J Czechoslovak Mathematical Journal
%D 2007
%P 1215-1222
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a7/
%G en
%F CMJ_2007__57_4_a7
Fan, Yi-Zheng. On eigenvectors of mixed graphs with exactly one nonsingular cycle. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1215-1222. http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a7/