The Neumann problem for the Laplace equation on general domains
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1107-1139.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The solution of the weak Neumann problem for the Laplace equation with a distribution as a boundary condition is studied on a general open set $G$ in the Euclidean space. It is shown that the solution of the problem is the sum of a constant and the Newtonian potential corresponding to a distribution with finite energy supported on $\partial G$. If we look for a solution of the problem in this form we get a bounded linear operator. Under mild assumptions on $G$ a necessary and sufficient condition for the solvability of the problem is given and the solution is constructed.
Classification : 31B10, 35D05, 35J05, 35J25
Keywords: Laplace equation; Neumann problem; potential; boundary integral equation method
@article{CMJ_2007__57_4_a3,
     author = {Medkov\'a, Dagmar},
     title = {The {Neumann} problem for the {Laplace} equation on general domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1107--1139},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2007},
     mrnumber = {2357583},
     zbl = {1174.31305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a3/}
}
TY  - JOUR
AU  - Medková, Dagmar
TI  - The Neumann problem for the Laplace equation on general domains
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1107
EP  - 1139
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a3/
LA  - en
ID  - CMJ_2007__57_4_a3
ER  - 
%0 Journal Article
%A Medková, Dagmar
%T The Neumann problem for the Laplace equation on general domains
%J Czechoslovak Mathematical Journal
%D 2007
%P 1107-1139
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a3/
%G en
%F CMJ_2007__57_4_a3
Medková, Dagmar. The Neumann problem for the Laplace equation on general domains. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1107-1139. http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a3/