Banaschewski’s theorem for generalized $MV$-algebras
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1099-1105.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A generalized $MV$-algebra $\mathcal A$ is called representable if it is a subdirect product of linearly ordered generalized $MV$-algebras. Let $S$ be the system of all congruence relations $\rho $ on $\mathcal A$ such that the quotient algebra $\mathcal A/\rho $ is representable. In the present paper we prove that the system $S$ has a least element.
Classification : 06D35, 06F15
Keywords: generalized $MV$-algebra; representability; congruence relation; unital lattice ordered group
@article{CMJ_2007__57_4_a2,
     author = {Jakub{\'\i}k, J\'an},
     title = {Banaschewski{\textquoteright}s theorem for generalized $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1099--1105},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2007},
     mrnumber = {2357582},
     zbl = {1174.06318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a2/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Banaschewski’s theorem for generalized $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1099
EP  - 1105
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a2/
LA  - en
ID  - CMJ_2007__57_4_a2
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Banaschewski’s theorem for generalized $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2007
%P 1099-1105
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a2/
%G en
%F CMJ_2007__57_4_a2
Jakubík, Ján. Banaschewski’s theorem for generalized $MV$-algebras. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1099-1105. http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a2/