Slim groupoids
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1275-1288.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Slim groupoids are groupoids satisfying $x(yz)\=xz$. We find all simple slim groupoids and all minimal varieties of slim groupoids. Every slim groupoid can be embedded into a subdirectly irreducible slim groupoid. The variety of slim groupoids has the finite embeddability property, so that the word problem is solvable. We introduce the notion of a strongly nonfinitely based slim groupoid (such groupoids are inherently nonfinitely based) and find all strongly nonfinitely based slim groupoids with at most four elements; up to isomorphism, there are just two such groupoids.
Classification : 08B15, 20N02
Keywords: groupoid; variety; nonfinitely based
@article{CMJ_2007__57_4_a10,
     author = {Je\v{z}ek, J.},
     title = {Slim groupoids},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1275--1288},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2007},
     mrnumber = {2357590},
     zbl = {1161.20055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a10/}
}
TY  - JOUR
AU  - Ježek, J.
TI  - Slim groupoids
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1275
EP  - 1288
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a10/
LA  - en
ID  - CMJ_2007__57_4_a10
ER  - 
%0 Journal Article
%A Ježek, J.
%T Slim groupoids
%J Czechoslovak Mathematical Journal
%D 2007
%P 1275-1288
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a10/
%G en
%F CMJ_2007__57_4_a10
Ježek, J. Slim groupoids. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1275-1288. http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a10/