Order affine completeness of lattices with Boolean congruence lattices
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1049-1065.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper grew out from attempts to determine which modular lattices of finite height are locally order affine complete. A surprising discovery was that one can go quite far without assuming the modularity itself. The only thing which matters is that the congruence lattice is finite Boolean. The local order affine completeness problem of such lattices ${\mathbf L}$ easily reduces to the case when ${\mathbf L}$ is a subdirect product of two simple lattices ${\mathbf L}_1$ and ${\mathbf L}_2$. Our main result claims that such a lattice is locally order affine complete iff ${\mathbf L}_1$ and ${\mathbf L}_2$ are tolerance trivial and one of the following three cases occurs: 1) ${\mathbf L}={\mathbf L}_1\times {\mathbf L}_2$, 2) ${\mathbf L}$ is a maximal sublattice of the direct product, 3) ${\mathbf L}$ is the intersection of two maximal sublattices, one containing $\langle 0,1\rangle $ and the other $\langle 1,0\rangle $.
Classification : 06B10, 08A30, 08A40
Keywords: order affine completeness; congruences of lattices; tolerances of lattices
@article{CMJ_2007__57_4_a0,
     author = {Kaarli, Kalle and Kuchmei, Vladimir},
     title = {Order affine completeness of lattices with {Boolean} congruence lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1049--1065},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2007},
     mrnumber = {2357580},
     zbl = {1174.06304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a0/}
}
TY  - JOUR
AU  - Kaarli, Kalle
AU  - Kuchmei, Vladimir
TI  - Order affine completeness of lattices with Boolean congruence lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 1049
EP  - 1065
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a0/
LA  - en
ID  - CMJ_2007__57_4_a0
ER  - 
%0 Journal Article
%A Kaarli, Kalle
%A Kuchmei, Vladimir
%T Order affine completeness of lattices with Boolean congruence lattices
%J Czechoslovak Mathematical Journal
%D 2007
%P 1049-1065
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a0/
%G en
%F CMJ_2007__57_4_a0
Kaarli, Kalle; Kuchmei, Vladimir. Order affine completeness of lattices with Boolean congruence lattices. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 4, pp. 1049-1065. http://geodesic.mathdoc.fr/item/CMJ_2007__57_4_a0/