On the order of certain close to regular graphs without a matching of given size
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 907-918.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A graph $G$ is a $\lbrace d,d+k\rbrace $-graph, if one vertex has degree $d+k$ and the remaining vertices of $G$ have degree $d$. In the special case of $k=0$, the graph $G$ is $d$-regular. Let $k,p\ge 0$ and $d,n\ge 1$ be integers such that $n$ and $p$ are of the same parity. If $G$ is a connected $\lbrace d,d+k\rbrace $-graph of order $n$ without a matching $M$ of size $2|M|=n-p$, then we show in this paper the following: If $d=2$, then $k\ge 2(p+2)$ and (i) $n\ge k+p+6$. If $d\ge 3$ is odd and $t$ an integer with $1\le t\le p+2$, then (ii) $n\ge d+k+1$ for $k\ge d(p+2)$, (iii) $n\ge d(p+3)+2t+1$ for $d(p+2-t)+t\le k\le d(p+3-t)+t-3$, (iv) $n\ge d(p+3)+2p+7$ for $k\le p$. If $d\ge 4$ is even, then (v) $n\ge d+k+2-\eta $ for $k\ge d(p+3)+p+4+\eta $, (vi) $n\ge d+k+p+2-2t=d(p+4)+p+6$ for $k=d(p+3)+4+2t$ and $p\ge 1$, (vii) $n\ge d+k+p+4$ for $d(p+2)\le k\le d(p+3)+2$, (viii) $n\ge d(p+3)+p+4$ for $k\le d(p+2)-2$, where $0\le t\le \frac{1}{2}{p}-1$ and $\eta =0$ for even $p$ and $0\le t\le \frac{1}{2}(p-1)$ and $\eta =1$ for odd $p$. The special case $k=p=0$ of this result was done by Wallis [6] in 1981, and the case $p=0$ was proved by Caccetta and Mardiyono [2] in 1994. Examples show that the given bounds (i)–(viii) are best possible.
Classification : 05C07, 05C70
Keywords: matching; maximum matching; close to regular graph
@article{CMJ_2007__57_3_a9,
     author = {Klinkenberg, Sabine and Volkmann, Lutz},
     title = {On the order of certain close to regular graphs without a matching of given size},
     journal = {Czechoslovak Mathematical Journal},
     pages = {907--918},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2007},
     mrnumber = {2356929},
     zbl = {1174.05101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a9/}
}
TY  - JOUR
AU  - Klinkenberg, Sabine
AU  - Volkmann, Lutz
TI  - On the order of certain close to regular graphs without a matching of given size
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 907
EP  - 918
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a9/
LA  - en
ID  - CMJ_2007__57_3_a9
ER  - 
%0 Journal Article
%A Klinkenberg, Sabine
%A Volkmann, Lutz
%T On the order of certain close to regular graphs without a matching of given size
%J Czechoslovak Mathematical Journal
%D 2007
%P 907-918
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a9/
%G en
%F CMJ_2007__57_3_a9
Klinkenberg, Sabine; Volkmann, Lutz. On the order of certain close to regular graphs without a matching of given size. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 907-918. http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a9/