On the integral representation of superbiharmonic functions
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 877-883.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a nonnegative superbiharmonic function $w$ satisfying some growth condition near the boundary of the unit disk in the complex plane. We shall find an integral representation formula for $w$ in terms of the biharmonic Green function and a multiple of the Poisson kernel. This generalizes a Riesz-type formula already found by the author for superbihamonic functions $w$ satisfying the condition $0\le w(z)\le C(1-|z|)$ in the unit disk. As an application we shall see that the polynomials are dense in weighted Bergman spaces whose weights are superbiharmonic and satisfy the stated growth condition near the boundary.
Classification : 31A10, 31A30, 35C15
Keywords: superbiharmonic function; biharmonic Green function; weighted Bergman space
@article{CMJ_2007__57_3_a7,
     author = {Abkar, Ali},
     title = {On the integral representation of superbiharmonic functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {877--883},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2007},
     mrnumber = {2356287},
     zbl = {1174.31302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a7/}
}
TY  - JOUR
AU  - Abkar, Ali
TI  - On the integral representation of superbiharmonic functions
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 877
EP  - 883
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a7/
LA  - en
ID  - CMJ_2007__57_3_a7
ER  - 
%0 Journal Article
%A Abkar, Ali
%T On the integral representation of superbiharmonic functions
%J Czechoslovak Mathematical Journal
%D 2007
%P 877-883
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a7/
%G en
%F CMJ_2007__57_3_a7
Abkar, Ali. On the integral representation of superbiharmonic functions. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 877-883. http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a7/