Signed degree sets in signed graphs
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 843-848.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The set $D$ of distinct signed degrees of the vertices in a signed graph $G$ is called its signed degree set. In this paper, we prove that every non-empty set of positive (negative) integers is the signed degree set of some connected signed graph and determine the smallest possible order for such a signed graph. We also prove that every non-empty set of integers is the signed degree set of some connected signed graph.
Classification : 05C07, 05C20, 05C22
Keywords: signed graphs
@article{CMJ_2007__57_3_a4,
     author = {Pirzada, S. and Naikoo, T. A. and Dar, F. A.},
     title = {Signed degree sets in signed graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {843--848},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2007},
     mrnumber = {2356284},
     zbl = {1174.05059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a4/}
}
TY  - JOUR
AU  - Pirzada, S.
AU  - Naikoo, T. A.
AU  - Dar, F. A.
TI  - Signed degree sets in signed graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 843
EP  - 848
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a4/
LA  - en
ID  - CMJ_2007__57_3_a4
ER  - 
%0 Journal Article
%A Pirzada, S.
%A Naikoo, T. A.
%A Dar, F. A.
%T Signed degree sets in signed graphs
%J Czechoslovak Mathematical Journal
%D 2007
%P 843-848
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a4/
%G en
%F CMJ_2007__57_3_a4
Pirzada, S.; Naikoo, T. A.; Dar, F. A. Signed degree sets in signed graphs. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 3, pp. 843-848. http://geodesic.mathdoc.fr/item/CMJ_2007__57_3_a4/