On potentially $H$-graphic sequences
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 705-724.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For given a graph $H$, a graphic sequence $\pi =(d_1,d_2,\ldots ,d_n)$ is said to be potentially $H$-graphic if there is a realization of $\pi $ containing $H$ as a subgraph. In this paper, we characterize the potentially $(K_5-e)$-positive graphic sequences and give two simple necessary and sufficient conditions for a positive graphic sequence $\pi $ to be potentially $K_5$-graphic, where $K_r$ is a complete graph on $r$ vertices and $K_r-e$ is a graph obtained from $K_r$ by deleting one edge. Moreover, we also give a simple necessary and sufficient condition for a positive graphic sequence $\pi $ to be potentially $K_6$-graphic.
Classification : 05C07
Keywords: graph; degree sequence; potentially $H$-graphic sequence
@article{CMJ_2007__57_2_a13,
     author = {Yin, Meng-Xiao and Yin, Jian-Hua},
     title = {On potentially $H$-graphic sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {705--724},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2007},
     mrnumber = {2337625},
     zbl = {1174.05024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a13/}
}
TY  - JOUR
AU  - Yin, Meng-Xiao
AU  - Yin, Jian-Hua
TI  - On potentially $H$-graphic sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 705
EP  - 724
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a13/
LA  - en
ID  - CMJ_2007__57_2_a13
ER  - 
%0 Journal Article
%A Yin, Meng-Xiao
%A Yin, Jian-Hua
%T On potentially $H$-graphic sequences
%J Czechoslovak Mathematical Journal
%D 2007
%P 705-724
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a13/
%G en
%F CMJ_2007__57_2_a13
Yin, Meng-Xiao; Yin, Jian-Hua. On potentially $H$-graphic sequences. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 705-724. http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a13/