Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 679-688.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $(\Omega ,\Sigma ) $ is a measurable space and $X$ a Banach space, we provide sufficient conditions on $\Sigma $ and $X$ in order to guarantee that $\mathop {\mathrm bvca}( \Sigma ,X) $, the Banach space of all $X$-valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of $c_{0}$ if and only if $X$ does.
Classification : 28A33, 28B05, 46B25, 46E27, 46G10
Keywords: countably additive vector measure of bounded variation; Pettis integrable function space; copy of $c_{0}$; copy of $\ell _{\infty }$
@article{CMJ_2007__57_2_a10,
     author = {Ferrando, J. C. and Ruiz, L. M. S\'anchez},
     title = {Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {679--688},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2007},
     mrnumber = {2337622},
     zbl = {1174.46016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a10/}
}
TY  - JOUR
AU  - Ferrando, J. C.
AU  - Ruiz, L. M. Sánchez
TI  - Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 679
EP  - 688
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a10/
LA  - en
ID  - CMJ_2007__57_2_a10
ER  - 
%0 Journal Article
%A Ferrando, J. C.
%A Ruiz, L. M. Sánchez
%T Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$
%J Czechoslovak Mathematical Journal
%D 2007
%P 679-688
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a10/
%G en
%F CMJ_2007__57_2_a10
Ferrando, J. C.; Ruiz, L. M. Sánchez. Embedding $c_0$ in ${\rm bvca}(\Sigma,X)$. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 679-688. http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a10/