Decomposing complete tripartite graphs into closed trails of arbitrary lengths
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 523-551.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The complete tripartite graph $K_{n,n,n}$ has $3n^2$ edges. For any collection of positive integers $x_1,x_2,\dots ,x_m$ with $\sum _{i=1}^m x_i=3n^2$ and $x_i\ge 3$ for $1\le i\le m$, we exhibit an edge-disjoint decomposition of $K_{n,n,n}$ into closed trails (circuits) of lengths $x_1,x_2,\dots ,x_m$.
Classification : 05C38, 05C70
Keywords: cycles; decomposing complete tripartite graphs
@article{CMJ_2007__57_2_a1,
     author = {Billington, Elizabeth J. and Cavenagh, Nicholas J.},
     title = {Decomposing complete tripartite graphs into closed trails of arbitrary lengths},
     journal = {Czechoslovak Mathematical Journal},
     pages = {523--551},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2007},
     mrnumber = {2337613},
     zbl = {1174.05100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a1/}
}
TY  - JOUR
AU  - Billington, Elizabeth J.
AU  - Cavenagh, Nicholas J.
TI  - Decomposing complete tripartite graphs into closed trails of arbitrary lengths
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 523
EP  - 551
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a1/
LA  - en
ID  - CMJ_2007__57_2_a1
ER  - 
%0 Journal Article
%A Billington, Elizabeth J.
%A Cavenagh, Nicholas J.
%T Decomposing complete tripartite graphs into closed trails of arbitrary lengths
%J Czechoslovak Mathematical Journal
%D 2007
%P 523-551
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a1/
%G en
%F CMJ_2007__57_2_a1
Billington, Elizabeth J.; Cavenagh, Nicholas J. Decomposing complete tripartite graphs into closed trails of arbitrary lengths. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 2, pp. 523-551. http://geodesic.mathdoc.fr/item/CMJ_2007__57_2_a1/