On the divisibility of power LCM matrices by power GCD matrices
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 115-125.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $S=\lbrace x_1,\dots ,x_n\rbrace $ be a set of $n$ distinct positive integers and $e\ge 1$ an integer. Denote the $n\times n$ power GCD (resp. power LCM) matrix on $S$ having the $e$-th power of the greatest common divisor $(x_i,x_j)$ (resp. the $e$-th power of the least common multiple $[x_i,x_j]$) as the $(i,j)$-entry of the matrix by $((x_i, x_j)^e)$ (resp. $([x_i, x_j]^e))$. We call the set $S$ an odd gcd closed (resp. odd lcm closed) set if every element in $S$ is an odd number and $(x_i,x_j)\in S$ (resp. $[x_i, x_j]\in S$) for all $1\le i,j \le n$. In studying the divisibility of the power LCM and power GCD matrices, Hong conjectured in 2004 that for any integer $e\ge 1$, the $n\times n$ power GCD matrix $((x_i, x_j)^e)$ defined on an odd-gcd-closed (resp. odd-lcm-closed) set $S$ divides the $n\times n$ power LCM matrix $([x_i, x_j]^e)$ defined on $S$ in the ring $M_n({\mathbb Z})$ of $n\times n$ matrices over integers. In this paper, we use Hong’s method developed in his previous papers [J. Algebra 218 (1999) 216–228; 281 (2004) 1–14, Acta Arith. 111 (2004), 165–177 and J. Number Theory 113 (2005), 1–9] to investigate Hong’s conjectures. We show that the conjectures of Hong are true for $n\le 3$ but they are both not true for $n\ge 4$.
Classification : 11A25, 11C20, 15A36
Keywords: GCD-closed set; LCM-closed set; greatest-type divisor; divisibility
@article{CMJ_2007__57_1_a9,
     author = {Zhao, Jianrong and Hong, Shaofang and Liao, Qunying and Shum, K. P.},
     title = {On the divisibility of power {LCM} matrices by power {GCD} matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2007},
     mrnumber = {2309953},
     zbl = {1174.11031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a9/}
}
TY  - JOUR
AU  - Zhao, Jianrong
AU  - Hong, Shaofang
AU  - Liao, Qunying
AU  - Shum, K. P.
TI  - On the divisibility of power LCM matrices by power GCD matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 115
EP  - 125
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a9/
LA  - en
ID  - CMJ_2007__57_1_a9
ER  - 
%0 Journal Article
%A Zhao, Jianrong
%A Hong, Shaofang
%A Liao, Qunying
%A Shum, K. P.
%T On the divisibility of power LCM matrices by power GCD matrices
%J Czechoslovak Mathematical Journal
%D 2007
%P 115-125
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a9/
%G en
%F CMJ_2007__57_1_a9
Zhao, Jianrong; Hong, Shaofang; Liao, Qunying; Shum, K. P. On the divisibility of power LCM matrices by power GCD matrices. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a9/