Commutators of singular integrals on spaces of homogeneous type
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 75-93.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this work we prove some sharp weighted inequalities on spaces of homogeneous type for the higher order commutators of singular integrals introduced by R. Coifman, R. Rochberg and G. Weiss in Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. As a corollary, we obtain that these operators are bounded on $L^{p}(w)$ when $w$ belongs to the Muckenhoupt’s class $A_{p}$, $p>1$. In addition, as an important tool in order to get our main result, we prove a weighted Fefferman-Stein type inequality on spaces of homogeneous type, which we have not found previously in the literature.
Classification : 42B25
Keywords: commutators; spaces of homogeneous type; weights
@article{CMJ_2007__57_1_a6,
     author = {Pradolini, Gladis and Salinas, Oscar},
     title = {Commutators of singular integrals on spaces of homogeneous type},
     journal = {Czechoslovak Mathematical Journal},
     pages = {75--93},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2007},
     mrnumber = {2309950},
     zbl = {1174.42322},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a6/}
}
TY  - JOUR
AU  - Pradolini, Gladis
AU  - Salinas, Oscar
TI  - Commutators of singular integrals on spaces of homogeneous type
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 75
EP  - 93
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a6/
LA  - en
ID  - CMJ_2007__57_1_a6
ER  - 
%0 Journal Article
%A Pradolini, Gladis
%A Salinas, Oscar
%T Commutators of singular integrals on spaces of homogeneous type
%J Czechoslovak Mathematical Journal
%D 2007
%P 75-93
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a6/
%G en
%F CMJ_2007__57_1_a6
Pradolini, Gladis; Salinas, Oscar. Commutators of singular integrals on spaces of homogeneous type. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 75-93. http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a6/