Intertwining numbers; the $n$-rowed shapes
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 53-65.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A fairly old problem in modular representation theory is to determine the vanishing behavior of the $\mathop {\mathrm Hom}\nolimits $ groups and higher $\mathop {\mathrm Ext}\nolimits $ groups of Weyl modules and to compute the dimension of the $\mathbb{Z} /(p)$-vector space $\mathop {\mathrm Hom}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ for any partitions $\lambda $, $\mu $ of $r$, which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups $\mathop {\mathrm Hom}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ and provide a new formula for the intertwining number for any $n$-rowed partition.
Classification : 05E15, 13D02, 20C20, 20G05, 20G10, 20G15
Keywords: representation theory; intertwining number; Weyl module; $\mathop {\mathrm Ext}\nolimits $ group; partition
@article{CMJ_2007__57_1_a4,
     author = {Ko, Hyoung J. and Lee, Kyoung J.},
     title = {Intertwining numbers; the $n$-rowed shapes},
     journal = {Czechoslovak Mathematical Journal},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2007},
     mrnumber = {2309948},
     zbl = {1166.20036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a4/}
}
TY  - JOUR
AU  - Ko, Hyoung J.
AU  - Lee, Kyoung J.
TI  - Intertwining numbers; the $n$-rowed shapes
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 53
EP  - 65
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a4/
LA  - en
ID  - CMJ_2007__57_1_a4
ER  - 
%0 Journal Article
%A Ko, Hyoung J.
%A Lee, Kyoung J.
%T Intertwining numbers; the $n$-rowed shapes
%J Czechoslovak Mathematical Journal
%D 2007
%P 53-65
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a4/
%G en
%F CMJ_2007__57_1_a4
Ko, Hyoung J.; Lee, Kyoung J. Intertwining numbers; the $n$-rowed shapes. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a4/