Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 435-445.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the topological and metric rigidity of hypersurfaces in ${\mathbb H}^{n+1}$, the $(n+1)$-dimensional hyperbolic space of sectional curvature $-1$. We find conditions to ensure a complete connected oriented hypersurface in ${\mathbb H}^{n+1}$ to be diffeomorphic to a Euclidean sphere. We also give sufficient conditions for a complete connected oriented closed hypersurface with constant norm of the second fundamental form to be totally umbilic.
Classification : 53C20, 53C24, 53C40, 53C42
Keywords: rigidity; hypersurfaces; topology; hyperbolic space
@article{CMJ_2007__57_1_a32,
     author = {Wang, Qiaoling and Xia, Changyu},
     title = {Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {435--445},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2007},
     mrnumber = {2309976},
     zbl = {1174.53318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a32/}
}
TY  - JOUR
AU  - Wang, Qiaoling
AU  - Xia, Changyu
TI  - Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 435
EP  - 445
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a32/
LA  - en
ID  - CMJ_2007__57_1_a32
ER  - 
%0 Journal Article
%A Wang, Qiaoling
%A Xia, Changyu
%T Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space
%J Czechoslovak Mathematical Journal
%D 2007
%P 435-445
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a32/
%G en
%F CMJ_2007__57_1_a32
Wang, Qiaoling; Xia, Changyu. Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 435-445. http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a32/