Spaces with large relative extent
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 387-394.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we prove the following statements: (1) For every regular uncountable cardinal $\kappa $, there exist a Tychonoff space $X$ and $Y$ a subspace of $X$ such that $Y$ is both relatively absolute star-Lindelöf and relative property (a) in $X$ and $e(Y,X) \ge \kappa $, but $Y$ is not strongly relative star-Lindelöf in $X$ and $X$ is not star-Lindelöf. (2) There exist a Tychonoff space $X$ and a subspace $Y$ of $X$ such that $Y$ is strongly relative star-Lindelöf in $X$ (hence, relative star-Lindelöf), but $Y$ is not absolutely relative star-Lindelöf in $X$.
Classification : 54D15, 54D20
Keywords: relative topological property; Lindelöf; star-Lindelöf; relative extent; relative property (a)
@article{CMJ_2007__57_1_a28,
     author = {Song, Yan-Kui},
     title = {Spaces with large relative extent},
     journal = {Czechoslovak Mathematical Journal},
     pages = {387--394},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2007},
     mrnumber = {2309972},
     zbl = {1174.54014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a28/}
}
TY  - JOUR
AU  - Song, Yan-Kui
TI  - Spaces with large relative extent
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 387
EP  - 394
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a28/
LA  - en
ID  - CMJ_2007__57_1_a28
ER  - 
%0 Journal Article
%A Song, Yan-Kui
%T Spaces with large relative extent
%J Czechoslovak Mathematical Journal
%D 2007
%P 387-394
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a28/
%G en
%F CMJ_2007__57_1_a28
Song, Yan-Kui. Spaces with large relative extent. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 387-394. http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a28/