A Korovkin type approximation theorems via $\scr I$-convergence
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 367-375.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Using the concept of $\mathcal {I}$-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.
Classification : 40A99, 41A10, 41A25, 41A36
Keywords: $\scr{I}$-convergence; positive linear operator; the classical Korovkin theorem
@article{CMJ_2007__57_1_a26,
     author = {Duman, O.},
     title = {A {Korovkin} type approximation theorems via $\scr I$-convergence},
     journal = {Czechoslovak Mathematical Journal},
     pages = {367--375},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2007},
     mrnumber = {2309970},
     zbl = {1174.41004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a26/}
}
TY  - JOUR
AU  - Duman, O.
TI  - A Korovkin type approximation theorems via $\scr I$-convergence
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 367
EP  - 375
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a26/
LA  - en
ID  - CMJ_2007__57_1_a26
ER  - 
%0 Journal Article
%A Duman, O.
%T A Korovkin type approximation theorems via $\scr I$-convergence
%J Czechoslovak Mathematical Journal
%D 2007
%P 367-375
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a26/
%G en
%F CMJ_2007__57_1_a26
Duman, O. A Korovkin type approximation theorems via $\scr I$-convergence. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 367-375. http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a26/