On Hong’s conjecture for power LCM matrices
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 253-268.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A set $\mathcal{S}=\lbrace x_1,\ldots ,x_n\rbrace $ of $n$ distinct positive integers is said to be gcd-closed if $(x_{i},x_{j})\in \mathcal{S}$ for all $1\le i,j\le n $. Shaofang Hong conjectured in 2002 that for a given positive integer $t$ there is a positive integer $k(t)$ depending only on $t$, such that if $n\le k(t)$, then the power LCM matrix $([x_i,x_j]^t)$ defined on any gcd-closed set $\mathcal{S}=\lbrace x_1,\ldots ,x_n\rbrace $ is nonsingular, but for $n\ge k(t)+1$, there exists a gcd-closed set $\mathcal{S}=\lbrace x_1,\ldots ,x_n\rbrace $ such that the power LCM matrix $([x_i,x_j]^t)$ on $\mathcal{S}$ is singular. In 1996, Hong proved $k(1)=7$ and noted $k(t)\ge 7$ for all $t\ge 2$. This paper develops Hong’s method and provides a new idea to calculate the determinant of the LCM matrix on a gcd-closed set and proves that $k(t)\ge 8$ for all $t\ge 2$. We further prove that $k(t)\ge 9$ iff a special Diophantine equation, which we call the LCM equation, has no $t$-th power solution and conjecture that $k(t)=8$ for all $t\ge 2$, namely, the LCM equation has $t$-th power solution for all $t\ge 2$.
Classification : 11A25, 11C20
Keywords: gcd-closed set; greatest-type divisor(GTD); maximal gcd-fixed set(MGFS); least common multiple matrix; power LCM matrix; nonsingularity
@article{CMJ_2007__57_1_a20,
     author = {Cao, Wei},
     title = {On {Hong{\textquoteright}s} conjecture for power {LCM} matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {253--268},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2007},
     mrnumber = {2309964},
     zbl = {1174.11030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a20/}
}
TY  - JOUR
AU  - Cao, Wei
TI  - On Hong’s conjecture for power LCM matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 253
EP  - 268
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a20/
LA  - en
ID  - CMJ_2007__57_1_a20
ER  - 
%0 Journal Article
%A Cao, Wei
%T On Hong’s conjecture for power LCM matrices
%J Czechoslovak Mathematical Journal
%D 2007
%P 253-268
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a20/
%G en
%F CMJ_2007__57_1_a20
Cao, Wei. On Hong’s conjecture for power LCM matrices. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 253-268. http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a20/