Boundary functions in $L^2H(\mathbb{B}^n)$
Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 29-47.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We solve the Dirichlet problem for line integrals of holomorphic functions in the unit ball: For a function $u$ which is lower semi-continuous on $\partial \mathbb{B}^{n}$ we give necessary and sufficient conditions in order that there exists a holomorphic function $f\in \mathbb{O}(\mathbb{B}^{n})$ such that \[ u(z)=\int _{|\lambda |1}\left|f(\lambda z)\right|^{2}\mathrm{d}{\mathfrak L}^{2}(\lambda ). \]
Classification : 30B30, 32A10, 32A40
Keywords: boundary behavior of holomorphic functions; exceptional sets; boundary functions; computed tomography; Dirichlet problem
@article{CMJ_2007__57_1_a2,
     author = {Kot, Piotr},
     title = {Boundary functions in $L^2H(\mathbb{B}^n)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {29--47},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2007},
     mrnumber = {2309946},
     zbl = {1174.30001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a2/}
}
TY  - JOUR
AU  - Kot, Piotr
TI  - Boundary functions in $L^2H(\mathbb{B}^n)$
JO  - Czechoslovak Mathematical Journal
PY  - 2007
SP  - 29
EP  - 47
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a2/
LA  - en
ID  - CMJ_2007__57_1_a2
ER  - 
%0 Journal Article
%A Kot, Piotr
%T Boundary functions in $L^2H(\mathbb{B}^n)$
%J Czechoslovak Mathematical Journal
%D 2007
%P 29-47
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a2/
%G en
%F CMJ_2007__57_1_a2
Kot, Piotr. Boundary functions in $L^2H(\mathbb{B}^n)$. Czechoslovak Mathematical Journal, Tome 57 (2007) no. 1, pp. 29-47. http://geodesic.mathdoc.fr/item/CMJ_2007__57_1_a2/