A note on the diophantine equation $x^2+b^Y=c^z$
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1109-1116
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $a$, $b$, $c$, $r$ be positive integers such that $a^{2}+b^{2}=c^{r}$, $\min (a,b,c,r)>1$, $\gcd (a,b)=1, a$ is even and $r$ is odd. In this paper we prove that if $b\equiv 3\hspace{4.44443pt}(\@mod \; 4)$ and either $b$ or $c$ is an odd prime power, then the equation $x^{2}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(a,2,r)$ with $\min (y,z)>1$.
Classification :
11D61
Keywords: exponential diophantine equation; Lucas number; positive divisor
Keywords: exponential diophantine equation; Lucas number; positive divisor
@article{CMJ_2006__56_4_a2,
author = {Le, Maohua},
title = {A note on the diophantine equation $x^2+b^Y=c^z$},
journal = {Czechoslovak Mathematical Journal},
pages = {1109--1116},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2006},
mrnumber = {2280797},
zbl = {1164.11319},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006__56_4_a2/}
}
Le, Maohua. A note on the diophantine equation $x^2+b^Y=c^z$. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1109-1116. http://geodesic.mathdoc.fr/item/CMJ_2006__56_4_a2/