Weak homogeneity and Pierce’s theorem for $MV$-algebras
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1215-1227
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we prove a theorem on weak homogeneity of $MV$-algebras which generalizes a known result on weak homogeneity of Boolean algebras. Further, we consider a homogeneity condition for $MV$-algebras which is defined by means of an increasing cardinal property.
Classification :
06D35
Keywords: $MV$-algebra; weak homogeneity; internal direct product decomposition
Keywords: $MV$-algebra; weak homogeneity; internal direct product decomposition
@article{CMJ_2006__56_4_a10,
author = {Jakub{\'\i}k, J\'an},
title = {Weak homogeneity and {Pierce{\textquoteright}s} theorem for $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1215--1227},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2006},
mrnumber = {2280805},
zbl = {1164.06315},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006__56_4_a10/}
}
Jakubík, Ján. Weak homogeneity and Pierce’s theorem for $MV$-algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 4, pp. 1215-1227. http://geodesic.mathdoc.fr/item/CMJ_2006__56_4_a10/