An upper bound for domination number of 5-regular graphs
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1049-1061
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G=(V, E)$ be a simple graph. A subset $S\subseteq V$ is a dominating set of $G$, if for any vertex $u\in V-S$, there exists a vertex $v\in S$ such that $uv\in E$. The domination number, denoted by $\gamma (G)$, is the minimum cardinality of a dominating set. In this paper we will prove that if $G$ is a 5-regular graph, then $\gamma (G)\le {5\over 14}n$.
@article{CMJ_2006__56_3_a22,
author = {Xing, Hua-Ming and Sun, Liang and Chen, Xue-Gang},
title = {An upper bound for domination number of 5-regular graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {1049--1061},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {2006},
mrnumber = {2261676},
zbl = {1164.05425},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006__56_3_a22/}
}
TY - JOUR AU - Xing, Hua-Ming AU - Sun, Liang AU - Chen, Xue-Gang TI - An upper bound for domination number of 5-regular graphs JO - Czechoslovak Mathematical Journal PY - 2006 SP - 1049 EP - 1061 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2006__56_3_a22/ LA - en ID - CMJ_2006__56_3_a22 ER -
Xing, Hua-Ming; Sun, Liang; Chen, Xue-Gang. An upper bound for domination number of 5-regular graphs. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 1049-1061. http://geodesic.mathdoc.fr/item/CMJ_2006__56_3_a22/