A simple method for constructing non-liouvillian first integrals of autonomous planar systems
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 987-999
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that a transformation method relating planar first-order differential systems to second order equations is an effective tool for finding non-liouvillian first integrals. We obtain explicit first integrals for a subclass of Kukles systems, including fourth and fifth order systems, and for generalized Liénard-type systems.
Classification :
33C99, 34A25, 34C07, 34C14, 81U15
Keywords: planar polynomial systems; Kukles systems; generalized Liénard systems; non-liouvillian first integrals
Keywords: planar polynomial systems; Kukles systems; generalized Liénard systems; non-liouvillian first integrals
@article{CMJ_2006__56_3_a17,
author = {Schulze-Halberg, Axel},
title = {A simple method for constructing non-liouvillian first integrals of autonomous planar systems},
journal = {Czechoslovak Mathematical Journal},
pages = {987--999},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {2006},
mrnumber = {2261671},
zbl = {1164.34396},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006__56_3_a17/}
}
TY - JOUR AU - Schulze-Halberg, Axel TI - A simple method for constructing non-liouvillian first integrals of autonomous planar systems JO - Czechoslovak Mathematical Journal PY - 2006 SP - 987 EP - 999 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2006__56_3_a17/ LA - en ID - CMJ_2006__56_3_a17 ER -
%0 Journal Article %A Schulze-Halberg, Axel %T A simple method for constructing non-liouvillian first integrals of autonomous planar systems %J Czechoslovak Mathematical Journal %D 2006 %P 987-999 %V 56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMJ_2006__56_3_a17/ %G en %F CMJ_2006__56_3_a17
Schulze-Halberg, Axel. A simple method for constructing non-liouvillian first integrals of autonomous planar systems. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 987-999. http://geodesic.mathdoc.fr/item/CMJ_2006__56_3_a17/