Star number and star arboricity of a complete multigraph
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 961-967
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a multigraph. The star number ${\mathrm s}(G)$ of $G$ is the minimum number of stars needed to decompose the edges of $G$. The star arboricity ${\mathrm sa}(G)$ of $G$ is the minimum number of star forests needed to decompose the edges of $G$. As usual $\lambda K_n$ denote the $\lambda $-fold complete graph on $n$ vertices (i.e., the multigraph on $n$ vertices such that there are $\lambda $ edges between every pair of vertices). In this paper, we prove that for $n \ge 2$ \[ \begin{aligned} {\mathrm s}(\lambda K_n)= \left\rbrace \begin{array}{ll}\frac{1}{2}\lambda n\text{if}\ \lambda \ \text{is even}, \frac{1}{2}(\lambda +1)n-1\text{if}\ \lambda \ \text{is odd,} \end{array}\right. {\vspace{2.0pt}} {\mathrm sa}(\lambda K_n)= \left\rbrace \begin{array}{ll}\lceil \frac{1}{2}\lambda n \rceil \text{if}\ \lambda \ \text{is odd},\ n = 2, 3 \ \text{or}\ \lambda \ \text{is even}, \lceil \frac{1}{2}\lambda n \rceil +1 \text{if}\ \lambda \ \text{is odd},\ n\ge 4. \end{array}\right. \end{aligned} \qquad \mathrm{(1,2)}\]
Classification :
05C70
Keywords: decomposition; star arboricity; star forest; complete multigraph
Keywords: decomposition; star arboricity; star forest; complete multigraph
@article{CMJ_2006__56_3_a14,
author = {Lin, Chiang and Shyu, Tay-Woei},
title = {Star number and star arboricity of a complete multigraph},
journal = {Czechoslovak Mathematical Journal},
pages = {961--967},
publisher = {mathdoc},
volume = {56},
number = {3},
year = {2006},
mrnumber = {2261668},
zbl = {1164.05433},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006__56_3_a14/}
}
Lin, Chiang; Shyu, Tay-Woei. Star number and star arboricity of a complete multigraph. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 3, pp. 961-967. http://geodesic.mathdoc.fr/item/CMJ_2006__56_3_a14/