The weak hereditary class of a variety
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 697-710
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the weak hereditary class $S_{w}(\mathcal K)$ of all weak subalgebras of algebras in a total variety $\mathcal K$. We establish an algebraic characterization, in the sense of Birkhoff’s HSP theorem, and a syntactical characterization of these classes. We also consider the problem of when such a weak hereditary class is weak equational.
Classification :
08A55, 08B99
Keywords: partial algebras; varieties; weak subalgebras; weak equations
Keywords: partial algebras; varieties; weak subalgebras; weak equations
@article{CMJ_2006__56_2_a32,
author = {Bartol, Wiktor and Rossell\'o, Francesc},
title = {The weak hereditary class of a variety},
journal = {Czechoslovak Mathematical Journal},
pages = {697--710},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {2006},
mrnumber = {2291768},
zbl = {1164.08303},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006__56_2_a32/}
}
Bartol, Wiktor; Rosselló, Francesc. The weak hereditary class of a variety. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 697-710. http://geodesic.mathdoc.fr/item/CMJ_2006__56_2_a32/