Perimeter preserver of matrices over semifields
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 515-524
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a rank-$1$ matrix $A= {\bold a \bold b}^t$, we define the perimeter of $A$ as the number of nonzero entries in both $\bold a$ and $\bold b$. We characterize the linear operators which preserve the rank and perimeter of rank-$1$ matrices over semifields. That is, a linear operator $T$ preserves the rank and perimeter of rank-$1$ matrices over semifields if and only if it has the form $T(A)=U A V$, or $T(A)=U A^t V$ with some invertible matrices U and V.
Classification :
15A03, 15A04, 15A23, 15A33
Keywords: linear operator; rank; dominate; perimeter; $(U, V)$-operator
Keywords: linear operator; rank; dominate; perimeter; $(U, V)$-operator
@article{CMJ_2006__56_2_a16,
author = {Song, Seok-Zun and Kang, Kyung-Tae and Jun, Young-Bae},
title = {Perimeter preserver of matrices over semifields},
journal = {Czechoslovak Mathematical Journal},
pages = {515--524},
publisher = {mathdoc},
volume = {56},
number = {2},
year = {2006},
mrnumber = {2291752},
zbl = {1164.15300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006__56_2_a16/}
}
TY - JOUR AU - Song, Seok-Zun AU - Kang, Kyung-Tae AU - Jun, Young-Bae TI - Perimeter preserver of matrices over semifields JO - Czechoslovak Mathematical Journal PY - 2006 SP - 515 EP - 524 VL - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2006__56_2_a16/ LA - en ID - CMJ_2006__56_2_a16 ER -
Song, Seok-Zun; Kang, Kyung-Tae; Jun, Young-Bae. Perimeter preserver of matrices over semifields. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 2, pp. 515-524. http://geodesic.mathdoc.fr/item/CMJ_2006__56_2_a16/