On a homogeneity condition for $MV$-algebras
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 79-98
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we deal with a homogeneity condition for an $MV$-algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to $\alpha $-completeness, where $\alpha $ runs over the class of all infinite cardinals.
Classification :
06D35
Keywords: $MV$-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product
Keywords: $MV$-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product
@article{CMJ_2006__56_1_a6,
author = {Jakub{\'\i}k, J\'an},
title = {On a homogeneity condition for $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {79--98},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2006},
mrnumber = {2206288},
zbl = {1164.06314},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006__56_1_a6/}
}
Jakubík, Ján. On a homogeneity condition for $MV$-algebras. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 79-98. http://geodesic.mathdoc.fr/item/CMJ_2006__56_1_a6/