Invariant subspaces of $X^{**}$ under the action of biconjugates
Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 61-77
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study conditions on an infinite dimensional separable Banach space $X$ implying that $X$ is the only non-trivial invariant subspace of $X^{**}$ under the action of the algebra $\mathbb{A}(X)$ of biconjugates of bounded operators on $X$: $\mathbb{A}(X)=\lbrace T^{**}\: T \in \mathcal {B}(X)\rbrace $. Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of $c_{0}$, and show in particular that any space which does not contain $\ell _1$ and has property (u) of Pelczynski is simple.
Classification :
46B10, 46B25, 46B99, 47A15, 47L05
Keywords: algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski
Keywords: algebras of operators with only one non-trivial invariant subspace; invariant subspaces under the action of the algebra of biconjugates operators; transitivity; property (u) of Pelczynski
@article{CMJ_2006__56_1_a5,
author = {Grivaux, Sophie and Rycht\'a\v{r}, Jan},
title = {Invariant subspaces of $X^{**}$ under the action of biconjugates},
journal = {Czechoslovak Mathematical Journal},
pages = {61--77},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2006},
mrnumber = {2206287},
zbl = {1164.47302},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2006__56_1_a5/}
}
TY - JOUR
AU - Grivaux, Sophie
AU - Rychtář, Jan
TI - Invariant subspaces of $X^{**}$ under the action of biconjugates
JO - Czechoslovak Mathematical Journal
PY - 2006
SP - 61
EP - 77
VL - 56
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CMJ_2006__56_1_a5/
LA - en
ID - CMJ_2006__56_1_a5
ER -
Grivaux, Sophie; Rychtář, Jan. Invariant subspaces of $X^{**}$ under the action of biconjugates. Czechoslovak Mathematical Journal, Tome 56 (2006) no. 1, pp. 61-77. http://geodesic.mathdoc.fr/item/CMJ_2006__56_1_a5/