Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 933-940
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
When a real-valued function of one variable is approximated by its $n$th degree Taylor polynomial, the remainder is estimated using the Alexiewicz and Lebesgue $p$-norms in cases where $f^{(n)}$ or $f^{(n+1)}$ are Henstock-Kurzweil integrable. When the only assumption is that $f^{(n)}~$ is Henstock-Kurzweil integrable then a modified form of the $n$th degree Taylor polynomial is used. When the only assumption is that $f^{(n)}\in C^0$ then the remainder is estimated by applying the Alexiewicz norm to Schwartz distributions of order 1.
Classification :
26A24, 26A39
Keywords: Taylor’s theorem; Henstock-Kurzweil integral; Alexiewicz norm
Keywords: Taylor’s theorem; Henstock-Kurzweil integral; Alexiewicz norm
@article{CMJ_2005__55_4_a9,
author = {Talvila, Erik},
title = {Estimates of the remainder in {Taylor{\textquoteright}s} theorem using the {Henstock-Kurzweil} integral},
journal = {Czechoslovak Mathematical Journal},
pages = {933--940},
publisher = {mathdoc},
volume = {55},
number = {4},
year = {2005},
mrnumber = {2184374},
zbl = {1081.26002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a9/}
}
TY - JOUR AU - Talvila, Erik TI - Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral JO - Czechoslovak Mathematical Journal PY - 2005 SP - 933 EP - 940 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a9/ LA - en ID - CMJ_2005__55_4_a9 ER -
Talvila, Erik. Estimates of the remainder in Taylor’s theorem using the Henstock-Kurzweil integral. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 933-940. http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a9/