On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1055-1065.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal A$, all $y \in \mathcal A$, and all $n\in \mathbb{Z}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ of real rank zero into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal A\mid v=v^*\hspace{5.0pt}\text{and}\hspace{5.0pt}v\hspace{5.0pt}\text{is} \text{invertible}\rbrace $, all $y\in \mathcal A$ and all $n\in \mathbb{Z}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb{C}$-linear $*$-derivations on unital $C^*$-algebras.
Classification : 39B52, 39B82, 46L05, 47B48
Keywords: $C^*$-algebra homomorphism; $C^*$-algebra; real rank zero; $\mathbb{C}$-linear $*$-derivation; stability
@article{CMJ_2005__55_4_a18,
     author = {Park, Chun-Gil and Chu, Hahng-Yun and Park, Won-Gil and Wee, Hee-Jeong},
     title = {On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1055--1065},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2005},
     mrnumber = {2184383},
     zbl = {1081.39025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a18/}
}
TY  - JOUR
AU  - Park, Chun-Gil
AU  - Chu, Hahng-Yun
AU  - Park, Won-Gil
AU  - Wee, Hee-Jeong
TI  - On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 1055
EP  - 1065
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a18/
LA  - en
ID  - CMJ_2005__55_4_a18
ER  - 
%0 Journal Article
%A Park, Chun-Gil
%A Chu, Hahng-Yun
%A Park, Won-Gil
%A Wee, Hee-Jeong
%T On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras
%J Czechoslovak Mathematical Journal
%D 2005
%P 1055-1065
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a18/
%G en
%F CMJ_2005__55_4_a18
Park, Chun-Gil; Chu, Hahng-Yun; Park, Won-Gil; Wee, Hee-Jeong. On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1055-1065. http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a18/