On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1055-1065
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal A$, all $y \in \mathcal A$, and all $n\in \mathbb{Z}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ of real rank zero into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal A\mid v=v^*\hspace{5.0pt}\text{and}\hspace{5.0pt}v\hspace{5.0pt}\text{is} \text{invertible}\rbrace $, all $y\in \mathcal A$ and all $n\in \mathbb{Z}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb{C}$-linear $*$-derivations on unital $C^*$-algebras.
Classification :
39B52, 39B82, 46L05, 47B48
Keywords: $C^*$-algebra homomorphism; $C^*$-algebra; real rank zero; $\mathbb{C}$-linear $*$-derivation; stability
Keywords: $C^*$-algebra homomorphism; $C^*$-algebra; real rank zero; $\mathbb{C}$-linear $*$-derivation; stability
@article{CMJ_2005__55_4_a18,
author = {Park, Chun-Gil and Chu, Hahng-Yun and Park, Won-Gil and Wee, Hee-Jeong},
title = {On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1055--1065},
publisher = {mathdoc},
volume = {55},
number = {4},
year = {2005},
mrnumber = {2184383},
zbl = {1081.39025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a18/}
}
TY - JOUR AU - Park, Chun-Gil AU - Chu, Hahng-Yun AU - Park, Won-Gil AU - Wee, Hee-Jeong TI - On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras JO - Czechoslovak Mathematical Journal PY - 2005 SP - 1055 EP - 1065 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a18/ LA - en ID - CMJ_2005__55_4_a18 ER -
%0 Journal Article %A Park, Chun-Gil %A Chu, Hahng-Yun %A Park, Won-Gil %A Wee, Hee-Jeong %T On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras %J Czechoslovak Mathematical Journal %D 2005 %P 1055-1065 %V 55 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a18/ %G en %F CMJ_2005__55_4_a18
Park, Chun-Gil; Chu, Hahng-Yun; Park, Won-Gil; Wee, Hee-Jeong. On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 1055-1065. http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a18/