A note on a class of factorized $p$-groups
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 993-996.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note we study finite $p$-groups $G=AB$ admitting a factorization by an Abelian subgroup $A$ and a subgroup $B$. As a consequence of our results we prove that if $B$ contains an Abelian subgroup of index $p^{n-1}$ then $G$ has derived length at most $2n$.
Classification : 20D15, 20D40
Keywords: factorizable groups; products of subgroups; $p$-groups
@article{CMJ_2005__55_4_a14,
     author = {Jabara, Enrico},
     title = {A note on a class of factorized $p$-groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {993--996},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2005},
     mrnumber = {2184379},
     zbl = {1081.20034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a14/}
}
TY  - JOUR
AU  - Jabara, Enrico
TI  - A note on a class of factorized $p$-groups
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 993
EP  - 996
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a14/
LA  - en
ID  - CMJ_2005__55_4_a14
ER  - 
%0 Journal Article
%A Jabara, Enrico
%T A note on a class of factorized $p$-groups
%J Czechoslovak Mathematical Journal
%D 2005
%P 993-996
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a14/
%G en
%F CMJ_2005__55_4_a14
Jabara, Enrico. A note on a class of factorized $p$-groups. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 4, pp. 993-996. http://geodesic.mathdoc.fr/item/CMJ_2005__55_4_a14/