$w^*$-basic sequences and reflexivity of Banach spaces
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 677-681
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We observe that a separable Banach space $X$ is reflexive iff each of its quotients with Schauder basis is reflexive. Similarly if $\mathcal L(X,Y)$ is not reflexive for reflexive $X$ and $Y$ then $\mathcal L(X_1, Y)$ is is not reflexive for some $X_1\subset X$, $X_1$ having a basis.
Classification :
46B10, 46B15, 46B28
Keywords: reflexive Banach space; Schauder basis; quotient space; w$^*$-basic sequence; tensor product
Keywords: reflexive Banach space; Schauder basis; quotient space; w$^*$-basic sequence; tensor product
@article{CMJ_2005__55_3_a8,
author = {John, Kamil},
title = {$w^*$-basic sequences and reflexivity of {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {677--681},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {2005},
mrnumber = {2153091},
zbl = {1081.46017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a8/}
}
John, Kamil. $w^*$-basic sequences and reflexivity of Banach spaces. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 677-681. http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a8/