The method of upper and lower solutions for a Lidstone boundary value problem
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 639-652.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we develop the monotone method in the presence of upper and lower solutions for the $2$nd order Lidstone boundary value problem \[ u^{(2n)}(t)=f(t,u(t),u^{\prime \prime }(t),\dots ,u^{(2(n-1))}(t)),\quad 01, u^{(2i)}(0)=u^{(2i)}(1)=0,\quad 0\le i\le n-1, \] where $f\:[0,1]\times \mathbb{R}^{n}\rightarrow \mathbb{R}$ is continuous. We obtain sufficient conditions on $f$ to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem.
Classification : 34B15
Keywords: $n$-parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution
@article{CMJ_2005__55_3_a5,
     author = {Guo, Yanping and Gao, Ying},
     title = {The method of upper and lower solutions for a {Lidstone} boundary value problem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {639--652},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2005},
     mrnumber = {2153088},
     zbl = {1081.34019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a5/}
}
TY  - JOUR
AU  - Guo, Yanping
AU  - Gao, Ying
TI  - The method of upper and lower solutions for a Lidstone boundary value problem
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 639
EP  - 652
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a5/
LA  - en
ID  - CMJ_2005__55_3_a5
ER  - 
%0 Journal Article
%A Guo, Yanping
%A Gao, Ying
%T The method of upper and lower solutions for a Lidstone boundary value problem
%J Czechoslovak Mathematical Journal
%D 2005
%P 639-652
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a5/
%G en
%F CMJ_2005__55_3_a5
Guo, Yanping; Gao, Ying. The method of upper and lower solutions for a Lidstone boundary value problem. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 639-652. http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a5/