Linear liftings of skew-symmetric tensor fields to Weil bundles
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 809-816
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We define equivariant tensors for every non-negative integer $p$ and every Weil algebra $A$ and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type $(p,0)$ on an $n$-dimensional manifold $M$ to tensor fields of type $(p,0)$ on $T^AM$ if $1\le p\le n$. Moreover, we determine explicitly the equivariant tensors for the Weil algebras ${\mathbb D}^r_k$, where $k$ and $r$ are non-negative integers.
Classification :
53A55, 58A32
Keywords: natural operator; product preserving bundle functor; Weil algebra
Keywords: natural operator; product preserving bundle functor; Weil algebra
@article{CMJ_2005__55_3_a21,
author = {D\k{e}becki, Jacek},
title = {Linear liftings of skew-symmetric tensor fields to {Weil} bundles},
journal = {Czechoslovak Mathematical Journal},
pages = {809--816},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {2005},
mrnumber = {2153104},
zbl = {1081.53015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a21/}
}
Dębecki, Jacek. Linear liftings of skew-symmetric tensor fields to Weil bundles. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 809-816. http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a21/