Linear liftings of skew-symmetric tensor fields to Weil bundles
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 809-816.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We define equivariant tensors for every non-negative integer $p$ and every Weil algebra $A$ and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type $(p,0)$ on an $n$-dimensional manifold $M$ to tensor fields of type $(p,0)$ on $T^AM$ if $1\le p\le n$. Moreover, we determine explicitly the equivariant tensors for the Weil algebras ${\mathbb D}^r_k$, where $k$ and $r$ are non-negative integers.
Classification : 53A55, 58A32
Keywords: natural operator; product preserving bundle functor; Weil algebra
@article{CMJ_2005__55_3_a21,
     author = {D\k{e}becki, Jacek},
     title = {Linear liftings of skew-symmetric tensor fields to {Weil} bundles},
     journal = {Czechoslovak Mathematical Journal},
     pages = {809--816},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2005},
     mrnumber = {2153104},
     zbl = {1081.53015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a21/}
}
TY  - JOUR
AU  - Dębecki, Jacek
TI  - Linear liftings of skew-symmetric tensor fields to Weil bundles
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 809
EP  - 816
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a21/
LA  - en
ID  - CMJ_2005__55_3_a21
ER  - 
%0 Journal Article
%A Dębecki, Jacek
%T Linear liftings of skew-symmetric tensor fields to Weil bundles
%J Czechoslovak Mathematical Journal
%D 2005
%P 809-816
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a21/
%G en
%F CMJ_2005__55_3_a21
Dębecki, Jacek. Linear liftings of skew-symmetric tensor fields to Weil bundles. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 3, pp. 809-816. http://geodesic.mathdoc.fr/item/CMJ_2005__55_3_a21/