Primitive lattice points inside an ellipse
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 519-530.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $Q(u, v)$ be a positive definite binary quadratic form with arbitrary real coefficients. For large real $x$, one may ask for the number $B(x)$ of primitive lattice points (integer points $(m, n)$ with $\gcd (M,n) =1$) in the ellipse disc $Q(u, v)\le x$, in particular, for the remainder term $R(x)$ in the asymptotics for $B(x)$. While upper bounds for $R(x)$ depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or $R(x)$ is, in integral mean, at least a positive constant $c$ time $x^{1/4}$. Furthermore, it is shown how to find an explicit value for $c$, for each specific given form $Q$.
Classification : 11E45, 11P21
Keywords: primitive lattice points; lattice point discrepancy; planar domains
@article{CMJ_2005__55_2_a22,
     author = {Nowak, Werner Georg},
     title = {Primitive lattice points inside an ellipse},
     journal = {Czechoslovak Mathematical Journal},
     pages = {519--530},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2005},
     mrnumber = {2137159},
     zbl = {1081.11064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a22/}
}
TY  - JOUR
AU  - Nowak, Werner Georg
TI  - Primitive lattice points inside an ellipse
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 519
EP  - 530
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a22/
LA  - en
ID  - CMJ_2005__55_2_a22
ER  - 
%0 Journal Article
%A Nowak, Werner Georg
%T Primitive lattice points inside an ellipse
%J Czechoslovak Mathematical Journal
%D 2005
%P 519-530
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a22/
%G en
%F CMJ_2005__55_2_a22
Nowak, Werner Georg. Primitive lattice points inside an ellipse. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 519-530. http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a22/